If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5v+20v^2=0
a = 20; b = 5; c = 0;
Δ = b2-4ac
Δ = 52-4·20·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5}{2*20}=\frac{-10}{40} =-1/4 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5}{2*20}=\frac{0}{40} =0 $
| -11t+3=47 | | 4x–3=x+11 | | 12g+11=168 | | -57x-22=(-47)+43-5x | | -12m+7=103 | | -4(3x-6)=18x-3 | | 7x-2(3+4x)=28 | | 20+z=-8 | | 3x-32=~7x+28 | | 75x25x=25 | | 2s/2=30 | | -11f+9=42 | | 8+h/10=0 | | 91=8(c+3)+3 | | 11=~5=9z+z | | 11=-5=9z+z | | 5(x-3)=9(x+3) | | -3.6x+2.5=-19.10 | | 2.4(3-y)-0.6(2y-3)=0 | | v/3=39 | | -2.5-1.5=n | | 7x-115=180 | | 47-h=3 | | -3.4=5.1+1.7z | | m2+23m+22=0 | | -4b=5=3b+9 | | 2,886=39(p+35) | | 1.2+1.2y=-3.6 | | -0.56(b+8)=-2.8 | | 4.4=1.1x+22 | | x+9/25=1/2 | | 6t16t-1/6=9 |